Topological types of 3-dimensional small covers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Types of 3-dimensional Small Covers

In this paper we study the (equivariant) topological types of a class of 3dimensional closed manifolds (i.e., 3-dimensional small covers), each of which admits a (Z2) -action such that its orbit space is a simple convex 3-polytope. We introduce six equivariant operations on such 3-dimensional closed manifolds. These six operations are interesting because of their combinatorial natures. Then we ...

متن کامل

3-dimensional topological σ-model ∗

A 3-dimensional model dual to the Rozansky-Witten topological sigma-model with a hyper-Kähler target space is considered. It is demonstrated that a Feynman diagram calculation of the classical part of its partition function yields the Milnor linking number.

متن کامل

Small cycle covers of 3-connected cubic graphs

Every 2-connected simple cubic graph of order n ≥ 6 has a cycle cover with at most dn4 e cycles. This bound is best possible.

متن کامل

Topological properties of the intersection graph of covers of n-dimensional surfaces

Motivated by a problem in computer graphic we develop discrete models of continuous n-dimensional spaces by using molecular spaces and graphs. We study a family of induced subgraphs of a given graph and find the conditions when the intersection graph of this family is homotopic to the given graph. We show that for a given surface and for all proper covers of this surface their intersection grap...

متن کامل

Small Covers over Prisms

In this paper we calculate the number of equivariant diffeomorphism classes of small covers over a prism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2011

ISSN: 0933-7741,1435-5337

DOI: 10.1515/form.2011.008